אנחנו עובדים על שחזור אפליקציית Unionpedia ב-Google Play Store
🌟פישטנו את העיצוב שלנו לניווט טוב יותר!
Instagram Facebook X LinkedIn

הלמה של שפרנר ומשפט נקודת השבת של בראואר

קיצורי דרך ל: הבדלים, דמיון, Jaccard דמיון מקדם, אזכור.

הבדל בין הלמה של שפרנר ומשפט נקודת השבת של בראואר

הלמה של שפרנר vs. משפט נקודת השבת של בראואר

הלמה של שפרנר עוסקת בצביעות של משולשים והוכחה על ידי המתמטיקאי הגרמני עמנואל שפרנר ב-1928. במתמטיקה, משפט נקודת השבת של בראואר (Brouwer) הוא משפט בטופולוגיה.

דמיון בין הלמה של שפרנר ומשפט נקודת השבת של בראואר

הלמה של שפרנר ומשפט נקודת השבת של בראואר יש להם 4 דברים במשותף (ביוניונפדיה): PPAD, סימפלקס, טריאנגולציה (גאומטריה), הלמה של קנסטר-קורטובסקי-מזורקביץ'.

PPAD

PPAD (Polynomial Parity Arguments on Directed graphs) היא מחלקת סיבוכיות המהווה תת-מחלקה של מחלקת הסיבוכיות TFNP.

PPAD והלמה של שפרנר · PPAD ומשפט נקודת השבת של בראואר · ראה עוד »

סימפלקס

ממד 2 (משולש) המשוכן במרחב האוקלידי התלת-ממדי סימפלקס מממד 3 (טטרהדרון) במתמטיקה, סִימְפְּלֵקְס הוא מבנה גאומטרי או קומבינטורי פשוט, המאופיין במספר הקודקודים הקטן ביותר האפשרי לגוף מאותו ממד.

הלמה של שפרנר וסימפלקס · משפט נקודת השבת של בראואר וסימפלקס · ראה עוד »

טריאנגולציה (גאומטריה)

במתמטיקה, טריאנגולציה היא חלוקה של משטח למשולשים (הנקראת גם שילוש), או - בהכללה - חלוקה של עצם גאומטרי מממד כלשהו לסימפלקסים.

הלמה של שפרנר וטריאנגולציה (גאומטריה) · טריאנגולציה (גאומטריה) ומשפט נקודת השבת של בראואר · ראה עוד »

הלמה של קנסטר-קורטובסקי-מזורקביץ'

הלמה של קנסטר-קורטובסקי-מזורקביץ היא משפט בסיסי בטופולוגיה של סימפלקסים, המאפשר להסיק, בתנאים מסוימים, שלכמה קבוצות סגורות יש נקודה משותפת.

הלמה של קנסטר-קורטובסקי-מזורקביץ' והלמה של שפרנר · הלמה של קנסטר-קורטובסקי-מזורקביץ' ומשפט נקודת השבת של בראואר · ראה עוד »

הרשימה לעיל עונה על השאלות הבאות

השוואה בין הלמה של שפרנר ומשפט נקודת השבת של בראואר

יש הלמה של שפרנר 11 יחסים. יש הלמה של שפרנר 30. כפי שיש להם במשותף 4, מדד הדמיון הוא = 4 / (11 + 30).

אזכור

מאמר זה מציג את מערכת היחסים בין הלמה של שפרנר ומשפט נקודת השבת של בראואר. כדי לגשת לכל מאמר שממנו הופק המידע, בקר בכתובת: