תוכן עניינים
49 יחסים: E (קבוע מתמטי), Sinc, משפט מוררה, משפט בוהר-מולרופ, משוואה פונקציונלית, מחולל מספרים אקראיים, אלומה גאוסיאנית, אינטגרל רימן-ליוביל, נוסחת סטירלינג, נוסחת המולטיפליקציה של גאוס, נוסחת האינטגרל החוזר של קושי, ספירה (גאומטריה), עצרת (מתמטיקה), עצרת כפולה, על מספר הראשוניים מתחת לגודל נתון, פאי, פונקצית גמא, פונקצית גאמה, פונקציה מרומורפית, פונקציה קמורה, פונקציה הולומורפית, פונקציית איירי, פונקציית פוליגמא, פונקציית קסי של רימן, פונקציית זטא של רימן, פונקציית בסל, פונקציית בטא, פונקציית בטא של דיריכלה, פונקציית גמא הלא שלמה, קרל פרידריך גאוס, קבוע אוילר-מסקרוני, קבוע גאוס, קורנל לאנצוש, קיום ויחידות, רשימת כתבי גאוס, לאונרד אוילר, טרנסצנדנטיות של e, טור המספרים הטבעיים, חשבון אינפיניטסימלי שברי, גמא, גז אולטרה-יחסותי, הארלד בוהר, השערת ברטראן, התמרת לפלס, התפלגות t, התפלגות בטא, התפלגות בינומית, התפלגות וייבול, כדור (גאומטריה).
E (קבוע מתמטי)
פונקציות מעריכיות בבסיסים שונים. פונקציית האקספוננט, המסומנת בכחול, היא הפונקציה המעריכית היחידה ששיפוע הישר המשיק לה (המסומן באדום) בנקודה x.
לִרְאוֹת פונקציית גמא וE (קבוע מתמטי)
Sinc
פונקציית ה-sinc המנורמלת (בכחול) ופונקציית ה-sinc הלא-מנורמלת (באדום) מוצגות על אותה סקלה עבור \ -6\pi \le x \le 6\pi. במתמטיקה, לפונקציית ה-sinc, שמסומנת \mathrm(x)\,, יש שתי הגדרות.
לִרְאוֹת פונקציית גמא וSinc
משפט מוררה
משפט מוררה הוא משפט באנליזה מרוכבת שנותן תנאי שימושי וחשוב להוכחת הולומורפיות של פונקציה.
לִרְאוֹת פונקציית גמא ומשפט מוררה
משפט בוהר-מולרופ
באנליזה מתמטית, משפט בוהר מולרופ הוא משפט המאפיין את פונקציית גמא באמצעות משוואה פונקציונלית.
לִרְאוֹת פונקציית גמא ומשפט בוהר-מולרופ
משוואה פונקציונלית
במתמטיקה, משוואה פונקציונלית היא משוואה שהנעלם שלה הוא פונקציה (בדרך כלל פונקציה ממשית).
לִרְאוֹת פונקציית גמא ומשוואה פונקציונלית
מחולל מספרים אקראיים
גלגל רולטה, שיטה פרימיטיבית ליצירת מספרים אקראיים בחישוביות, מחולל מספרים אקראיים (מכונה בקיצור RNG, ראשי תיבות של המונח האנגלי Random number generator) הוא התקן פיזי או חישובי המייצר רצף סימנים (מספרים) חסרי תבנית או סדר דטרמיניסטי כלשהו, דהיינו אקראיים.
לִרְאוֹת פונקציית גמא ומחולל מספרים אקראיים
אלומה גאוסיאנית
באופטיקה, אלומה גאוסיאנית היא אלומה של קרינה אלקטרומגנטית בה משרעת (אמפליטודה) השדה החשמלי ועוצמתו (ערך מוחלט של המשרעת בריבוע) מתפרשים על המישור המאונך לכיוון התקדמות האלומה לפי התפלגות גאוס.
לִרְאוֹת פונקציית גמא ואלומה גאוסיאנית
אינטגרל רימן-ליוביל
במתמטיקה, ובפרט בחשבון אינפיניטסימלי, אינטגרל רימן-ליוביל הוא אופרטור אשר מייצג פעולת אינטגרל חוזר עבור מספר פעמים שאיננו שלם (רציונלי) או מרוכב.
לִרְאוֹת פונקציית גמא ואינטגרל רימן-ליוביל
נוסחת סטירלינג
עבור x גדול, \ \ln(x!) מתקרב ל x\ln(x)-x נוסחת סטירלינג היא קירוב מתמטי לערך של n! (במילים: n עצרת) עבור ערכים גדולים של n. הנוסחה קרויה על שם המתמטיקאי הסקוטי, ג'יימס סטירלינג.
לִרְאוֹת פונקציית גמא ונוסחת סטירלינג
נוסחת המולטיפליקציה של גאוס
#הפניה פונקציית גמא.
לִרְאוֹת פונקציית גמא ונוסחת המולטיפליקציה של גאוס
נוסחת האינטגרל החוזר של קושי
במתמטיקה, ובפרט בחשבון אינפיניטסימלי, נוסחת האינטגרל החוזר של קושי היא נוסחה המאפשרת לחשב את התוצאה של הפעלה חוזרת ונשנית של אינטגרל על פונקציה ממשית.
לִרְאוֹת פונקציית גמא ונוסחת האינטגרל החוזר של קושי
ספירה (גאומטריה)
בגאומטריה ובטופולוגיה, ספֵירה היא קבוצת הנקודות שמרחקן מנקודה מסוימת ("המרכז") הוא קבוע.
לִרְאוֹת פונקציית גמא וספירה (גאומטריה)
עצרת (מתמטיקה)
במתמטיקה, עֲצֶרֶת (באנגלית: Factorial) היא מכפלת כל המספרים הטבעיים מ־1 ועד למספר נתון.
לִרְאוֹת פונקציית גמא ועצרת (מתמטיקה)
עצרת כפולה
במתמטיקה, עצרת כפולה של מספר שלם ואי-שלילי n, היא מכפלת כל המספרים השלמים מ-1 ועד למספר n, שלהם אותה זוגיות כמו n. נהוג לסמן עצרת כפולה בצורה n!!.
לִרְאוֹת פונקציית גמא ועצרת כפולה
על מספר הראשוניים מתחת לגודל נתון
העמוד הראשון במאמר על מספר הראשוניים מתחת לגודל נתון (בגרמנית: Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse) הוא מאמר מתמטי באורך 10 עמודים, שפרסם ברנהרד רימן בנובמבר 1859, בירחון "Monatsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin".
לִרְאוֹת פונקציית גמא ועל מספר הראשוניים מתחת לגודל נתון
פאי
\pi שווה להיקף של מעגל שקוטרו 1 (ורדיוסו ½) במתמטיקה, \pi (האות היוונית פִּי; בעברית מקובלת ההגייה פַּאי, על דרך האנגלית) הוא מספר חסר ממד המייצג את היחס הקבוע (בגאומטריה האוקלידית) בין היקף המעגל לקוטרו.
לִרְאוֹת פונקציית גמא ופאי
פונקצית גמא
#הפניה פונקציית גמא.
לִרְאוֹת פונקציית גמא ופונקצית גמא
פונקצית גאמה
#הפניה פונקציית גמא.
לִרְאוֹת פונקציית גמא ופונקצית גאמה
פונקציה מרומורפית
פונקציה מֶרוֹמורפית היא פונקציה שהיא הולומורפית בכל המישור המרוכב מלבד בנקודות בקבוצה של קטבים מבודדים.
לִרְאוֹת פונקציית גמא ופונקציה מרומורפית
פונקציה קמורה
דוגמה לפונקציה קמורה במתמטיקה, פונקציה ממשית היא פונקציה קמורה בקטע מסוים, אם לכל שתי נקודות על גרף הפונקציה (שערך ה-\,x שלהן נמצא בקטע), הקו המחבר ביניהן נמצא מעל לגרף הפונקציה (או עליו).
לִרְאוֹת פונקציית גמא ופונקציה קמורה
פונקציה הולומורפית
כל פונקציה הולומורפית שנגזרתה איננה מתאפסת בנקודה כלשהי היא קונפורמית בה - היא העתקה משמרת זווית בין עקומים (בתמונה - תמונתה של רשת מלבנית תחת העתקה קונפורמית). פונקציה הולומורפית (לעיתים נקראת גם פונקציה רגולרית) היא פונקציה מרוכבת של משתנה מרוכב אחד או יותר, הגזירה במובן המרוכב בסביבת כל נקודה בתחומה.
לִרְאוֹת פונקציית גמא ופונקציה הולומורפית
פונקציית איירי
במדעי הטבע, פונקציית איירי (או פונקציית איירי מהסוג הראשון) שסימונה Ai היא פונקציה מיוחדת שקרויה על שם האסטרונום הבריטי ג'ורג' בידל איירי (1801–1892).
לִרְאוֹת פונקציית גמא ופונקציית איירי
פונקציית פוליגמא
גרף של פונקציית גמא מסדר 0, 1, 2 ו-3 במתמטיקה, פונקציית הפוליגמא מסדר m היא פונקציה מרומורפית אשר מוגדרת על ידי הנגזרת של הלוגריתם של פונקציית גמא: אז כאשר \Gamma(z) היא פונקציית גמא.
לִרְאוֹת פונקציית גמא ופונקציית פוליגמא
פונקציית קסי של רימן
במישור המרוכב. במתמטיקה, פונקציית קסי של רימן (מסומנת באות \xi) היא פונקציה מרוכבת אשר קשורה לפונקציית זטא של רימן ומוגדרת על ידי משוואה פונקציונלית על בסיס פונקציית גמא ופונקציית זטא של רימן.
לִרְאוֹת פונקציית גמא ופונקציית קסי של רימן
פונקציית זטא של רימן
גרף של פונקציית זטא עבור s>1 ממשי פונקציית זטא של רימן היא פונקציה מרוכבת הקרויה על שמו של המתמטיקאי ברנהרד רימן, ונודעת לה חשיבות רבה בתורת המספרים, בשל הקשר שלה להתפלגותם של המספרים הראשוניים.
לִרְאוֹת פונקציית גמא ופונקציית זטא של רימן
פונקציית בסל
במתמטיקה, פונקציית בסל היא פתרון \ y(x) למשוואה דיפרנציאלית הנקראת משוואת בסל: כאשר p הוא קבוע (ממשי או מרוכב) הנקרא הסדר של פונקציית בסל.
לִרְאוֹת פונקציית גמא ופונקציית בסל
פונקציית בטא
פונקציית בטא היא פונקציה של שני מספרים מרוכבים המוגדרת על ידי האינטגרל::\mathrm(x,y).
לִרְאוֹת פונקציית גמא ופונקציית בטא
פונקציית בטא של דיריכלה
פונקציית בטא של דיריכלה במתמטיקה, פונקציית בטא של דיריכלה הנקראת על שם יוהאן פטר גוסטב לז'ן דיריכלה היא פונקציה אשר קשורה לפונקציית זטא של רימן.
לִרְאוֹת פונקציית גמא ופונקציית בטא של דיריכלה
פונקציית גמא הלא שלמה
פונקציית גמא הלא שלמה מוגדרת על ידי אינטגרל בעל אותו אינטגרנד כמו פונקציית גמא, אך עם גבולות אינטגרציה שונים: ישנם שני סוגים של פונקציית גמא הלא שלמה: עליונה ותחתונה.
לִרְאוֹת פונקציית גמא ופונקציית גמא הלא שלמה
קרל פרידריך גאוס
יוהאן קרל פרידריך גאוס (בגרמנית: Johann Carl Friedrich Gauß, 30 באפריל 1777 – 23 בפברואר 1855) היה מתמטיקאי, פיזיקאי ואסטרונום גרמני, מגדולי המתמטיקאים של כל הזמנים.
לִרְאוֹת פונקציית גמא וקרל פרידריך גאוס
קבוע אוילר-מסקרוני
השטח הכחול הכלוא בין גרף של 1/\lfloor x\rfloor לגרף של 1/x בקטע מ-1 עד אינסוף שווה לקבוע אוילר מסקרוני. קבוע אוילר, הידוע גם כקבוע אוילר-מסקרוני או כקבוע מסקרוני הוא קבוע מתמטי, שהשימוש העיקרי שלו הוא בתורת המספרים, המסומן באות גמא (\,\gamma) ומוגדר על ידי הגבול: כלומר קבוע אוילר הוא ההפרש האסימפטוטי בין הטור ההרמוני ללוגריתם הטבעי.
לִרְאוֹת פונקציית גמא וקבוע אוילר-מסקרוני
קבוע גאוס
במתמטיקה, קבוע גאוס (מצוין באות G) מוגדר כהופכי של הממוצע האריתמטי-גאומטרי של 1 והשורש הריבועי של 2: הקבוע נקרא על שמו של קרל פרידריך גאוס, אשר גילה ב-30 במאי 1799 כי: כך שמתקיים: כאשר β מציינת את פונקציית בטא.
לִרְאוֹת פונקציית גמא וקבוע גאוס
קורנל לאנצוש
קורנל לאנצוש (במקור לוי, בהונגרית: Lánczos Kornél; סקשפהרוואר, 2 בפברואר 1893 – בודפשט, 25 ביוני 1974) היה מתמטיקאי ופיזיקאי יהודי-הונגרי.
לִרְאוֹת פונקציית גמא וקורנל לאנצוש
קיום ויחידות
במתמטיקה, קיום ויחידוּת הוא מונח המציין כי קיים עצם מתמטי יחיד המקיים הגדרה נתונה.
לִרְאוֹת פונקציית גמא וקיום ויחידות
רשימת כתבי גאוס
כתביו של המתמטיקאי, הפיזיקאי והאסטרונום הגרמני קרל פרידריך גאוס עוסקים במגוון רחב של תחומי מתמטיקה, אסטרונומיה ופיזיקה.
לִרְאוֹת פונקציית גמא ורשימת כתבי גאוס
לאונרד אוילר
לאונרד אוֹילֶר (בגרמנית:; 15 באפריל 1707 – 18 בספטמבר 1783) היה מתמטיקאי ופיזיקאי שווייצרי, שבילה את רוב חייו ברוסיה ובגרמניה.
לִרְאוֹת פונקציית גמא ולאונרד אוילר
טרנסצנדנטיות של e
הקבוע המתמטי e תופס מקום מרכזי בענפי מתמטיקה רבים.
לִרְאוֹת פונקציית גמא וטרנסצנדנטיות של e
טור המספרים הטבעיים
טור המספרים הטבעיים הוא תוצאת החיבור של סדרת המספרים הטבעיים, מ-1 ועד אינסוף (\ 1+2+3+\cdots).
לִרְאוֹת פונקציית גמא וטור המספרים הטבעיים
חשבון אינפיניטסימלי שברי
במתמטיקה, חשבון אינפיניטסימלי שברי הוא תחום החוקר את הדרכים בהן ניתן להגדיר חזקה ממשית או מרוכבת לאופרטור דיפרנציאלי כגון אופרטור הנגזרת ואופרטור האינטגרל.
לִרְאוֹת פונקציית גמא וחשבון אינפיניטסימלי שברי
גמא
גמא (אות גדולה: Γ, אות קטנה: γ) היא האות השלישית באלפבית היווני.
לִרְאוֹת פונקציית גמא וגמא
גז אולטרה-יחסותי
גז אולטרה-יחסותי (באנגלית: Ultra-relativistic Gas) הוא גז המורכב מחלקיקים בגבול האולטרה-יחסותי.
לִרְאוֹת פונקציית גמא וגז אולטרה-יחסותי
הארלד בוהר
הארלד אוגוסט בוהר (בדנית: Harald August Bohr; 22 באפריל 1887 - 22 בינואר 1951) היה מתמטיקאי דני-יהודי, אחיו הצעיר של הפיזיקאי נילס בוהר.
לִרְאוֹת פונקציית גמא והארלד בוהר
השערת ברטראן
השערת ברטראן היא משפט שניסח לראשונה המתמטיקאי הצרפתי ז'וזף ברטראן בשנת 1845, בצורת השערה.
לִרְאוֹת פונקציית גמא והשערת ברטראן
התמרת לפלס
התמרת לפלס היא כלי מתמטי שהשימוש בו מקל מאוד על ניתוח ההתנהגות של מערכות ליניאריות ללא תלות בזמן, כגון מעגלים חשמליים ומערכות מכניות ואופטיות.
לִרְאוֹת פונקציית גמא והתמרת לפלס
התפלגות t
בתורת ההסתברות, התפלגות t של סטודנט (Student's t-distribution), או בפשטות התפלגות t, היא התפלגות המתארת את הערכים הצפויים למדגם מתוך אוכלוסייה המקיימת התפלגות נורמלית, כאשר גודלו של המדגם קטן וסטיית התקן של האוכלוסייה אינה ידועה.
לִרְאוֹת פונקציית גמא והתפלגות t
התפלגות בטא
בתורת ההסתברות ובסטטיסטיקה, התפלגות בטא היא משפחה של התפלגויות רציפות, המוגדרות על הקטע ובעלות שני פרמטרים המשפיעים על צורת ההתפלגות: α ו-β.
לִרְאוֹת פונקציית גמא והתפלגות בטא
התפלגות בינומית
התפלגות בינומית היא התפלגות בדידה, המתארת את מספר ההצלחות בסדרה של n ניסויי ברנולי בלתי תלויים עם הסתברות הצלחה p בכל אחד.
לִרְאוֹת פונקציית גמא והתפלגות בינומית
התפלגות וייבול
בתורת ההסתברות ובסטטיסטיקה, התפלגות וייבול היא התפלגות הסתברות רציפה.
לִרְאוֹת פונקציית גמא והתפלגות וייבול
כדור (גאומטריה)
פני השטח של כדור כדור הוא גוף גאומטרי המורכב מן הנקודות במרחב שמרחקן מנקודה קבועה הוא לכל היותר מספר קבוע מסוים, הקרוי רדיוס.
לִרְאוֹת פונקציית גמא וכדור (גאומטריה)
אזכור
ידוע גם בשם פונקציית גאמה.